Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Medicine (Baltimore) ; 103(12): e37358, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38518054

RESUMO

Studying the regulatory mechanism and clinical application of G2 and S phase-expressed protein 1 (GTSE1) genes in lung adenocarcinoma (LUAD). LUAD data was obtained from The Cancer Genome Atlas (TCGA) database, and differentially expressed genes (DEGs) were derived by analyzing expression data using R software. Survival analysis was performed to identify genes associated with LUAD, and among them, a target gene for LUAD was identified. Further analysis of the gene expression profiling interactive analysis database revealed differences in gene expression between normal and tumor tissues of LUAD patients. Disease free survival (DFS) and overall survival (OS) of the GTSE1 genes in LUAD were compared. The study conducted a GSEA analysis of GTSE1 expression and further investigated the relationships between GTSE1 expression and the survival time of LUAD patients at different pathological stages. The correlations between OS and GTSE1 gene expression were explored based on different treatments. Additionally, the correlation between the GTSE1 gene and immune infiltration was analyzed. The results indicated that the expression of GTSE1 was significantly higher in tumor tissues of LUAD compared to normal tissues. Furthermore, patients with high GTSE1 expression had significantly lower survival rates for OS and DFS compared to patients with low expression of GTSE1. The GSEA analysis of GTSE1 revealed its involvement in LUAD through the Reactome unwinding of DNA and Biocarta ranms pathway. In patients with LUAD at the pathological T2 stage, low expression of GTSE1 was associated with longer survival time. Furthermore, LUAD patients with low GTSE1 expression who underwent surgery without chemotherapy exhibited a longer survival time. The GTST1 gene, identified as a target gene of LUAD, was validated through cell experiments and pathological sections. GTSE1 can be used as a marker and therapeutic target for LUAD. The survival of LUAD patients can be improved by reducing the expression of GTSE1.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Fase S , Prognóstico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Associadas aos Microtúbulos/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38261478

RESUMO

Despite significant results achieved by Contrastive Language-Image Pretraining (CLIP) in zero-shot image recognition, limited effort has been made exploring its potential for zero-shot video recognition. This paper presents Open-VCLIP++, a simple yet effective framework that adapts CLIP to a strong zero-shot video classifier, capable of identifying novel actions and events during testing. Open-VCLIP++ minimally modifies CLIP to capture spatial-temporal relationships in videos, thereby creating a specialized video classifier while striving for generalization. We formally demonstrate that training Open-VCLIP++ is tantamount to continual learning with zero historical data. To address this problem, we introduce Interpolated Weight Optimization, a technique that leverages the advantages of weight interpolation during both training and testing. Furthermore, we build upon large language models to produce fine-grained video descriptions. These detailed descriptions are further aligned with video features, facilitating a better transfer of CLIP to the video domain. Our approach is evaluated on three widely used action recognition datasets, following a variety of zero-shot evaluation protocols. The results demonstrate that our method surpasses existing state-of-the-art techniques by significant margins. Specifically, we achieve zero-shot accuracy scores of 88.1%, 58.7%, and 81.2% on UCF, HMDB, and Kinetics-600 datasets respectively, outpacing the best-performing alternative methods by 8.5%, 8.2%, and 12.3%. We also evaluate our approach on the MSR-VTT video-text retrieval dataset, where it delivers competitive video-to-text and text-to-video retrieval performance, while utilizing substantially less fine-tuning data compared to other methods. Code is released at https://github.com/wengzejia1/Open-VCLIP.

3.
Acta Cir Bras ; 38: e387023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055403

RESUMO

PURPOSE: Cerebral ischemia-reperfusion (I/R) is a neurovascular disorder that leads to brain injury. In mice, Fasudil improves nerve injury induced by I/R. However, it is unclear if this is mediated by increased peroxisome proliferator-activated receptor-α (PPARα) expression and reduced oxidative damage. This study aimed to investigate the neuroprotective mechanism of action of Fasudil. METHODS: MCAO (Middle cerebral artery occlusion) was performed in male C57BL/6J wild-type and PPARα KO mice between September 2021 to April 2023. Mice were treated with Fasudil and saline; 2,3,5-Triphenyltetrazolium chloride (TTC) staining was performed to analyze cerebral infarction. PPARα and Rho-associated protein kinase (ROCK) expression were detected using Western blot, and the expression of NADPH subunit Nox2 mRNA was detected using real-time polymerase chain reaction. The NADPH oxidase activity level and reactive oxygen species (ROS) content were also investigated. RESULTS: After cerebral ischemia, the volume of cerebral necrosis was reduced in wild-type mice treated with Fasudil. The expression of PPARα was increased, while ROCK was decreased. Nox2 mRNA expression, NADPH oxidase activity, and ROS content decreased. There were no significant changes in cerebral necrosis volumes, NADPH oxidase activity, and ROS content in the PPARα KO mice treated with Fasudil. CONCLUSIONS: In mice, the neuroprotective effect of Fasudil depends on the expression of PPARα induced by ROCK-PPARα-NOX axis-mediated reduction in ROS and associated oxidative damage.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Camundongos , Masculino , Animais , PPAR alfa/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Neuroproteção , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/genética , Camundongos Endogâmicos C57BL , Isquemia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/prevenção & controle , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Reperfusão , Necrose , RNA Mensageiro
4.
Comput Biol Med ; 163: 107151, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348264

RESUMO

In recent decades, the incidence and mortality of cervical cancer have declined in developed countries due to the implementation of screening and vaccination programs. However, cervical cancer remains one of the major culprits of cancer-related deaths in young women. Current studies have found that immune cell-related intercellular communication in the tumor microenvironment has a large impact on the construction of the immunosuppressive microenvironment. In this study, we performed a comprehensive immune analysis on bulk RNA-seq and scRNA-seq data obtained from cervical cancer and revealed that two highly plastic cell populations, M0 macrophages and naïve CD4+ T cells, were significantly correlated with prognosis and clinical phenotypes. Notably, signaling between M0 macrophages and naïve CD4+ T cells as well as intracellular transcription factor activity were significantly altered in the tumor state. Furthermore, we identified overlapping genes between the transcription factor target genes of M0 macrophages or naïve CD4+ T cells and the differentially expressed genes in each type of cell, and these overlapping genes were subsequently subjected to an analysis using the LASSO regression model. Finally, we generated a score index that was significantly associated with the clinical prognosis of cervical cancer. In conclusion, interventions to improve the communication between M0 macrophages and naïve CD4+ T cells may help to improve the immunosuppressive microenvironment of cervical cancer and prevent immune evasion. The relevant molecular mechanisms need to be further validated by experimental and cohort studies.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/genética , Transcriptoma/genética , Linfócitos T , Imunossupressores , Macrófagos , Fatores de Transcrição , Linfócitos T CD4-Positivos , Microambiente Tumoral
5.
Acta cir. bras ; 38: e387023, 2023. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1527595

RESUMO

Purpose: Cerebral ischemia-reperfusion (I/R) is a neurovascular disorder that leads to brain injury. In mice, Fasudil improves nerve injury induced by I/R. However, it is unclear if this is mediated by increased peroxisome proliferator-activated receptor-α (PPARα) expression and reduced oxidative damage. This study aimed to investigate the neuroprotective mechanism of action of Fasudil. Methods: MCAO (Middle cerebral artery occlusion) was performed in male C57BL/6J wild-type and PPARα KO mice between September 2021 to April 2023. Mice were treated with Fasudil and saline; 2,3,5-Triphenyltetrazolium chloride (TTC) staining was performed to analyze cerebral infarction. PPARα and Rho-associated protein kinase (ROCK) expression were detected using Western blot, and the expression of NADPH subunit Nox2 mRNA was detected using real-time polymerase chain reaction. The NADPH oxidase activity level and reactive oxygen species (ROS) content were also investigated. Results: After cerebral ischemia, the volume of cerebral necrosis was reduced in wild-type mice treated with Fasudil. The expression of PPARα was increased, while ROCK was decreased. Nox2 mRNA expression, NADPH oxidase activity, and ROS content decreased. There were no significant changes in cerebral necrosis volumes, NADPH oxidase activity, and ROS content in the PPARα KO mice treated with Fasudil. Conclusions: In mice, the neuroprotective effect of Fasudil depends on the expression of PPARα induced by ROCK-PPARα-NOX axis-mediated reduction in ROS and associated oxidative damage.


Assuntos
Animais , Camundongos , Lesões Encefálicas , Traumatismo por Reperfusão , Isquemia Encefálica , Estresse Oxidativo
6.
Front Microbiol ; 13: 967565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118195

RESUMO

Natural revegetation has been widely confirmed to be an effective strategy for the restoration of degraded lands, particularly in terms of rehabilitating ecosystem productivity and soil nutrients. Yet the mechanisms of how natural revegetation influences the variabilities and drivers of soil residing fungal communities, and its downstream effects on ecosystem nutrient cycling are not well understood. For this study, we investigated changes in soil fungal communities along with ~160 years of natural revegetation in the Loess Plateau of China, employing Illumina MiSeq DNA sequencing analyses. Our results revealed that the soil fungal abundance was greatly enhanced during the later stages of revegetation. As revegetation progresses, soil fungal richness appeared first to rise and then decline at the climax Quercus liaotungensis forest stage. The fungal Shannon and Simpson diversity indexes were the lowest and highest at the climax forest stage among revegetation stages, respectively. Principal component analysis, Bray-Curtis similarity indices, and FUNGuild function prediction suggested that the composition, trophic modes, and functional groups for soil fungal communities gradually shifted along with natural revegetation. Specifically, the relative abundances of Basidiomycota, Agaricomycetes, Eurotiomycetes, and ectomycorrhizal fungi progressively increased, while that of Ascomycota, Sordariomycetes, Dothideomycetes, Tremellomycetes, saprotrophic, pathotrophic, arbuscular mycorrhizal fungi, and endophyte fungi gradually decreased along with natural revegetation, respectively. The most enriched members of Basidiomycota (e.g., Agaricomycetes, Agaricales, Cortinariaceae, Cortinarius, Sebacinales, Sebacinaceae, Tricholomataceae, Tricholoma, Russulales, and Russulaceae) were found at the climax forest stage. As important carbon (C) sources, the most enriched symbiotic fungi (particularly ectomycorrhizal fungi containing more recalcitrant compounds) can promote organic C and nitrogen (N) accumulation in soils of climax forest. However, the most abundant of saprotrophic fungi in the early stages of revegetation decreased soil organic C and N accumulation by expediting the decomposition of soil organic matter. Our results suggest that natural revegetation can effectively restore soil fungal abundance, and modify soil fungal diversity, community composition, trophic modes, and functional groups by altering plant properties (e.g., plant species richness, diversity, evenness, litter quantity and quality), quantity and quality of soil nutrient substrates, soil moisture and pH. These changes in soil fungal communities, particularly their trophic modes and functional groups along with natural revegetation, impact the accumulation and decomposition of soil C and N and potentially affect ecosystem C and N cycling in the Loess Plateau of China.

7.
Biosci Rep ; 42(6)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35712981

RESUMO

Hepatocellular carcinoma (HCC) is a common malignant tumour with high rates of morbidity and mortality worldwide. Therefore, it is of great significance to find new molecular markers for HCC diagnosis and treatment. G6PD is known to be dysregulated in a variety of tumours. In addition, the ceRNA network plays a crucial role in the occurrence and development of HCC. However, the mechanism by which the ceRNA network regulates G6PD in HCC remains unclear. We used TCGA-LIHC data to analyse the possibility of using G6PD as an independent prognostic marker. Univariate Cox proportional hazards regression, multivariate Cox proportional hazards regression, and receiver operating characteristic curve analysis were used to analyse the influence of G6PD overexpression on the prognosis of HCC patients. We also analysed the biological function of G6PD, its effect on the immune microenvironment, and drug sensitivity. Finally, we constructed a ceRNA network of lncRNAs/miR-122-5p/G6PD to explore the regulatory mechanism of G6PD. G6PD was highly expressed in HCC, was related to pathological stage and poor prognosis, and could be used as an independent prognostic indicator of HCC. The expression of G6PD was closely related to the immune microenvironment of HCC. In addition, the expression of G6PD in HCC could be regulated by the ceRNA network. Therefore, G6PD can be used as an immunotherapy target to improve the survival and prognosis of HCC patients, and the ceRNA regulatory network of G6PD has potential diagnostic and therapeutic value for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Microambiente Tumoral/genética
8.
J Korean Neurosurg Soc ; 65(5): 697-709, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35577542

RESUMO

OBJECTIVE: The present study aimed to identify the function of ischemic stroke (IS) patients' peripheral blood and its role in IS, explore the pathogenesis, and provide direction for clinical research progress by comprehensive bioinformatics analysis. METHODS: Two datasets, including GSE58294 and GSE22255, were downloaded from Gene Expression Omnibus database. GEO2R was utilized to obtain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed using the database annotation, visualization and integrated discovery database. The protein-protein interaction (PPI) network of DEGs was constructed by search tool of searching interactive gene and visualized by Cytoscape software, and then the Hub gene was identified by degree analysis. The microRNA (miRNA) and miRNA target genes closely related to the onset of stroke were obtained through the miRNA gene regulatory network. RESULTS: In total, 36 DEGs, containing 27 up-regulated and nine down-regulated DEGs, were identified. GO functional analysis showed that these DEGs were involved in regulation of apoptotic process, cytoplasm, protein binding and other biological processes. KEGG enrichment analysis showed that these DEGs mediated signaling pathways, including HTLV-I infection and microRNAs in cancer. The results of PPI network and cytohubba showed that there was a relationship between DEGs, and five hub genes related to stroke were obtained : SOCS3, KRAS, PTGS2, EGR1, and DUSP1. Combined with the visualization of DEG-miRNAs, hsa-mir-16-5p, hsa-mir-181a-5p and hsa-mir-124-3p were predicted to be the key miRNAs in stroke, and three miRNAs were related to hub gene. CONCLUSION: Thirty-six DEGs, five Hub genes, and three miRNA were obtained from bioinformatics analysis of IS microarray data, which might provide potential targets for diagnosis and treatment of IS.

9.
Neurol Sci ; 43(2): 1155-1166, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34313877

RESUMO

Stroke is a sudden cerebrovascular circulatory disorder with high morbidity, disability, mortality, and recurrence rate, but its pathogenesis and key genes are still unclear. In this study, bioinformatics was used to deeply analyze the pathogenesis of stroke and related key genes, so as to study the potential pathogenesis of stroke and provide guidance for clinical treatment. Gene Expression profiles of GSE58294 and GSE16561 were obtained from Gene Expression Omnibus (GEO), the differentially expressed genes (DEGs) were identified between IS and normal control group. The different expression genes (DEGs) between IS and normal control group were screened with the GEO2R online tool. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were performed. Using the Database for Annotation, Visualization and Integrated Discovery (DAVID) and gene set enrichment analysis (GSEA), the function and pathway enrichment analysis of DEGS were performed. Then, a protein-protein interaction (PPI) network was constructed via the Search Tool for the Retrieval of Interacting Genes (STRING) database. Cytoscape with CytoHubba were used to identify the hub genes. Finally, NetworkAnalyst was used to construct the targeted microRNAs (miRNAs) of the hub genes. A total of 85 DEGs were screened out in this study, including 65 upward genes and 20 downward genes. In addition, 3 KEGG pathways, cytokine - cytokine receptor interaction, hematopoietic cell lineage, B cell receptor signaling pathway, were significantly enriched using a database for labeling, visualization, and synthetic discovery. In combination with the results of the PPI network and CytoHubba, 10 hub genes including CEACAM8, CD19, MMP9, ARG1, CKAP4, CCR7, MGAM, CD79A, CD79B, and CLEC4D were selected. Combined with DEG-miRNAs visualization, 5 miRNAs, including hsa-mir-146a-5p, hsa-mir-7-5p, hsa-mir-335-5p, and hsa-mir-27a- 3p, were predicted as possibly the key miRNAs. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of ischemic stroke, and provide a new strategy for clinical therapy.


Assuntos
MicroRNAs , Acidente Vascular Cerebral , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , Acidente Vascular Cerebral/genética
10.
Neurologist ; 26(2): 27-31, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33646985

RESUMO

BACKGROUND: Stroke is a serious cardiovascular disease, a major cause of disability and death in both developed and developing countries. Superoxide dismutases (SODs) are enzymes that catalyze the breakdown of superoxide into oxygen and hydrogen peroxide and play a key role in the antioxidant response. This study explored the relationship between single-nucleotide polymorphisms (SNPs) in SOD genes and the risk of ischemic stroke (IS) in the Chinese Han population of Dali City. METHODS: For this case-control study, the authors enrolled 144 patients who had an IS and 128 healthy controls. The SNPs rs17880487 and rs80265967 of the SOD1 gene, rs4880 and rs2842960 of the SOD2 gene, and rs2695232 and rs7655372 of the SOD3 gene were detected through TaqMan polymerase chain reaction. Genotypes and allele frequencies of the 2 groups were compared. Odds ratio and 95% confidence intervals were calculated by unconditional logistic regression, and environmental factors were corrected with multivariate logistic regression analysis. RESULTS: Rs7655372 of SOD3 was associated with a significantly increased risk of IS. Moreover, the A and GA genotypes of SNP rs7655372 were associated with increased risk of IS, whereas the A and GA genotypes were risk factors for IS. Furthermore, multivariate logistic regression analysis showed that the rs7655372 GA genotype is the independent risk factor for IS. CONCLUSION: The SOD3 gene rs7655372 locus polymorphism is a risk factor for IS in the Dali region.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Isquemia Encefálica/genética , Estudos de Casos e Controles , China , Frequência do Gene , Predisposição Genética para Doença/genética , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Acidente Vascular Cerebral/genética , Superóxido Dismutase/genética
11.
J Korean Neurosurg Soc ; 64(2): 309-315, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33227180

RESUMO

OBJECTIVE: To explore the correlation between the polymorphism of histone deacetylase 9 gene (rs1060499865, rs723296, rs957960) and ischemic stroke (IS) in Chinese Han population in Dali region. METHODS: This study included 155 IS patients and 128 healthy physical examinees. TaqMan-polymerase chain reaction technology and multivariate logistic regression were performed. RESULTS: In the case group, there was no polymorphism of rs1060499865 observed in the two groups; whereas on the rs723296 locus the frequencies of C allele and TC genotype were significantly higher than that in the control group, alleles C and T were associated with a 2.158-fold increase in IS risk, and genotypes TC and TT were associated with a 2.269-fold increase in IS risk. The locus rs957960 exhibited no significant difference between the two groups. CONCLUSION: An association between rs723296 and the risk of IS was found in the Chinese Han population in Dali region. No significant association was found between rs1060499865, rs957960 and IS in the Chinese Han population in Dali region.

12.
J Korean Neurosurg Soc ; 63(5): 550-558, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32182412

RESUMO

To perform a systematic review of the data collected from case-control studies conducted earlier to investigate the correlation between E-selectin S128R polymorphism and ischemic stroke (IS) risk among the Chinese population. The PubMed, Web of Science, Chinese biomedical literature database (CBM), Chinese databases China National Knowledge Infrastructure (CNKI), WanfangData knowledge service platform (Wanfang Data), and information resource integration service platform (VIP) Databases were searched to retrieve case-control studies on the correlation between E-selectin gene S128R polymorphism and IS from the inception of the database till June 2019. The literature was screened, data were extracted, the risk of bias was reviewed, and the studies included were assessed independently by two reviewers. Stata ver. 12.0 software (Stata Corp LLC, College Station, TX, USA) was used to perform the meta-analysis. A total of 2907 cases from eight case-control studies involving 1478 IS patients and 1429 controls were included in this study. The R allele and RS genotype in E-selectin were found to be associated with the risk of IS as per the results of the meta-analysis (R vs. S : odds ratio [OR], 2.75; 95% confidence interval [CI], 2.15-3.51; p<0.00001; RS vs. SS : OR, 2.50; 95% CI, 1.95-3.19; p<0.00001; RR+RS vs. SS : OR, 2.85, 95% CI, 2.21-3.67; p<0.00001). The E-selectin gene S128R polymorphism is likely related to IS based on the results of a meta-analysis in the Chinese population, and the R allele and RS genotype of E-selectin may be IS risk factors.

13.
AMB Express ; 9(1): 142, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506849

RESUMO

The co-factor NADH plays an important role in butanol biosynthesis. In this study, we found that aspartate could effectively improve the butanol production of Clostridium acetobutylicum ATCC 824. Further study showed that aspartate could be used as the precursor of NADH de novo synthesis in C. acetobutylicum ATCC 824. When 2 g/L aspartate was added, the transcription levels of essential genes (nadA, nadB and nadC) for NADH de novo synthesis were significantly higher than that of without aspartate addition. The levels of intracellular NAD+, NADH, total NAD(H) and the ratio of NADH/NAD+ were also significantly increased, which were 63.9 ± 8.0%, 85.0 ± %, 77.7 ± 8.0% and 12.7 ± 2.9% higher than those of without aspartate addition, respectively. Furthermore, the butanol production was improved by overexpressing the NADH de novo synthesis genes, and the fermentation performance could be further enhanced by strengthening the VB1 biosynthesis and NADH de novo synthesis pathway simultaneously. As a result, the butanol titer of the engineered strain 824(thiCGE-nadC) reached 13.96 ± 0.11 g/L, 7.2 ± 0.4%, 18.1 ± 0.1%, 34.1 ± 0.1% higher than that of 824(thiCGE), 824(nadC) and the wild type strain, respectively. This study has a reference value for the NADH related researches of other microbes, and the engineering strategy used in this study provides a new idea for construction of efficient fuel-producing strains.

14.
Appl Microbiol Biotechnol ; 102(10): 4511-4522, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29627851

RESUMO

Butyric acid fermentation by Clostridium couples with the synthesis of acetic acid. But the presence of acetic acid reduces butyric acid yield and increases separation and purification costs of butyric acid. Hence, enhancing the butyrate/acetate ratio is important for economical butyric acid production. This study indicated that enhancing the acetyl-CoA to butyrate flux by overexpression of both the butyryl-CoA/acetate CoA transferase (cat1) and crotonase (crt) genes in C. tyrobutyricum could significantly reduce acetic acid concentration. Fed-batch fermentation of ATCC 25755/cat1 + crt resulted in increased butyrate/acetate ratio of 15.76 g/g, which was 2.24-fold higher than that of the wild-type strain. Furthermore, in order to simultaneously increase the butyrate/acetate ratio, butyric acid concentration and productivity, the recombinant strain ATCC 25755/ppcc (co-expression of 6-phosphofructokinase (pfkA) gene, pyruvate kinase (pykA) gene, cat1, and crt) was constructed. Consequently, ATCC 25755/ppcc produced more butyric acid (46.8 vs. 35.0 g/L) with a higher productivity (0.83 vs. 0.49 g/L·h) and butyrate/acetate ratio (13.22 vs. 7.22 g/g) as compared with the wild-type strain in batch fermentation using high glucose concentration (120 g/L). This study demonstrates that enhancing the acetyl-CoA to butyrate flux is an effective way to reduce acetic acid production and increase butyrate/acetate ratio.


Assuntos
Ácido Butírico/metabolismo , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Engenharia Metabólica , Acetato-CoA Ligase/metabolismo , Fermentação
15.
Bioresour Technol ; 250: 691-698, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29220814

RESUMO

Lignocellulosic biomass is the most abundant and renewable substrate for biological fermentation, but the inhibitors present in the lignocellulosic hydrolysates could severely inhibit the cell growth and productivity of industrial strains. This study confirmed that overexpressing of native groESL in Clostridium tyrobutyricum could significantly improve its tolerance to lignocellulosic hydrolysate-derived inhibitors, especially for phenolic compounds. Consequently, ATCC 25755/groESL showed a better performance in butyric acid fermentation with hydrolysates of corn cob, corn straw, rice straw, wheat straw, soybean hull and soybean straw, respectively. When corn straw and rice straw hydrolysates, which showed strong toxicity to C. tyrobutyricum, were used as the substrates, 29.6 g/L and 30.1 g/L butyric acid were obtained in batch fermentation, increased by 26.5% and 19.4% as compared with the wild-type strain, respectively. And more importantly, the butyric acid productivity reached 0.31 g/L·h (vs. 0.20-0.21 g/L·h for the wild-type strain) due to the shortened lag phase.


Assuntos
Ácido Butírico , Clostridium tyrobutyricum , Biomassa , Fermentação , Proteínas de Choque Térmico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...